

Use of Lifetime Monitoring for Flexible Plant Operation

Jatinder Singh

- 1. Renewable vs. Thermal Generation
- 2. Fatigue of the wall-thicked components
- 3. Life Time Monitoring
- 4. Start Procedures
- 5. Fatigue Trends
- 6. Calculation Results
- 7. Forcast by Predictive Analytics
- 8. Case Study: how to double the number of start-ups
- 9. Conlusions

	Renewable %	Thermal %	Others %
Energy Generation	29.5	52.2	18.3
Installed Capacity	50.5	38.4	11.1

Highly Loaded Thick-Walled Components Limit the Flexibility

Thermal Stresses in Header's Wall during Start-Up and Shut Down

Measurements and Parameters for Automatic Life Time Monitoring

Increased Stress Due to Load Changes

Hours of operation [h]

Start-up Procedures Often Differ Significantly

steag

Analysis Termopaipa power plant, 2014

Life Time Monitoring in PADO System: Trend of Fatigue of Y-Piece

Life Time Monitoring Results

steag

	SR1 Cockpit			<	01/31/2015 23:5	59
OMPONENT 7 - 1 HAH70BE	WITH HIGHEST DEGRADATION			¢ QUICK	LINKS	
55%	D _c in 200.000m	9%	D _k in 200.	000m Fatiga	Overview Creep of C	component 17
1208	38 h		Total Monitored	Data	Sheet Component 17	
NIT SUMMA 2 DEMO, UNIT	RY					= 13
NIT SUMMA P DEMO, UNIT No T	RY 1 Caption ▼	D _{C.Mat} / % =	D _{F,Mat} /% =	D _{total} /% =	D _{200,0006} /% ▼	≡ ∎ D _{FRSE} /%
NIT SUMMA P DEMO, UNIT No = 17	RY 1 Caption = 1 HAH70BB011 SH3 outlet header left	D _{C,Mat} /% ▼ 3.27	D _{Fi} Mat / % = 4.75	D _{total} /% マ 8.03	D _{200,000h} /% ▼	D _{FRSE} /% 3 3.31
NIT SUMMA P DEMO, UNIT No = 17 14	RY 1 Caption = 1HAH70BB011SH3 outlet header left 1HAH52BB001 Con. pipe spray attemperator 2.2	D _{C,Mat} /% = 3.27 1.54	D _{F,Mat} /% ▼ 4.75 0.96	D _{total} /% = 8.03 2.51	D _{200,000h} /% ▼	D _{FRSE} / % 3 3.31 0.26
NIT SUMMA P DEMO, UNIT No * 17 14 18	RY 1 Caption * 1 HAH70BB011 SH3 outlet header left 1 HAH52BB001 Con. pipe spray attemperator 2.2 1 HAH70BB011 SH3 outlet header right	D _{C,Mat} /% ▼ 3.27 1.54 0.90	D _{F,Mat} /% ▼ 4.75 0.96 1.46	D _{total} /% ▼ 8.03 2.51 2.37	D _{200,000h} /% ▼	D _{FRSE} /% 3.31 0.26 1.12
NIT SUMMA P DEMO, UNIT No • 17 14 18 12	RY 1 Caption 1 HAH70BB011 SH3 outlet header left 1 HAH52BB001 Con. pipe spray attemperator 2.2 1 HAH70BB011 SH3 outlet header right 1 HAH42BB021 SH2 outlet header	D _{C,Mat} /% ▼ 3.27 1.54 0.90 1.65	D _{F,Mat} /% ▼ 4.75 0.96 1.46 0.63	D _{total} /% = 8.03 2.51 2.37 2.27	D _{200,000h} /% ▼	DFRSE/% 3.31 0.26 1.12 4.91
NIT SUMMA P DEMO, UNIT No * 17 14 18 12 11	RY 1 Caption * 1 HAH70BB011 SH3 outlet header left 1 HAH52BB001 Con. pipe spray attemperator 2.2 1 HAH70BB011 SH3 outlet header right 1 HAH70BB011 SH3 outlet header right 1 HAH70BB011 SH3 outlet header right 1 HAH42BB021 SH2 outlet header 1 HAH41BB021 SH2 outlet header	D _{C.Mat} /% ▼ 3.27 1.54 0.90 1.65 1.38	D _{F,Mat} /% マ 4.75 0.96 1.46 0.63 0.58	D _{total} /% ▼ 8.03 2.51 2.37 2.27 1.95	D _{200,000h} /% <	DFRSE / % 3 3.31 0.26 1.12 4.91 0.20
NIT SUMMA DEMO, UNIT No * 17 14 18 12 11 13	RY 1 Caption * 1HAH70BB011 SH3 outlet header left 1HAH52BB001 Con. pipe spray attemperator 2.2 1HAH70BB011 SH3 outlet header right 1HAH42BB021 SH2 outlet header 1HAH41BB021 SH2 outlet header 1HAH41BB021 SH2 outlet header	D _{C,Mat} /% ▼ 3.27 1.54 0.90 1.65 1.38 1.13	D _{F,Mat} /% ▼ 4.75 0.96 1.46 0.63 0.58 0.46	D _{total} /% ▼ 8.03 2.51 2.37 2.27 1.95 1.59	D _{200,000h} /%	D _{FRSE} /% 3.31 0.26 1.12 4.91 0.20 0.07
NIT SUMMA P DEMO, UNIT No • 17 14 18 12 11 13 21	RY 1 Caption ▼ 1 HAH70BB011 SH3 outlet header left 1 HAH52BB001 Con. pipe spray attemperator 2.2 1 HAH70BB011 SH3 outlet header right 1 HAH42BB021 SH2 outlet header 1 HAH41BB021 SH2 outlet header 1 HAH41BB001 Con. pipe spray attemperator 2.1 1 HAJ30BB021 RH2 outlet header left	D _{CMat} /% ▼ 3.27 1.54 0.90 1.65 1.38 1.13 1.17	D _{F,Mat} /% ▼ 4.75 0.96 1.46 0.63 0.58 0.46 0.04	D _{total} /% マ 8.03 2.51 2.37 2.27 1.95 1.59 1.21	D _{200,000h} /% ▼	DFRSE / % 3.31 0.26 1.12 4.91 0.20 0.07 0.01

MPONENT 17 - LARGE LOAD AH70BB011 SH3 OUTLET HEADE	CHANGES R LEFT					
Time	T/°C	p/MPa	ΔΤ/Κ	σ/MPa	2fa*/MPa	D _F /%
- 43577						
7/3/2013 7:41:00 AM	335.0	3.5	-87.4	-522.4	1496.2	0.19
8/7/2013 12:33:30 PM	355.6	14.9	109.9	765.3	1496.2	0.19
8/7/2013 6:13:30 PM	432.3	3.3	-49.5	-285.3	1496.2	0.19
8/10/2013 2:08:00 PM	422.3	15.5	125.5	859.7	1496.2	0.19
- 79849						
10/11/2013 2:44:00 PM	397.8	14.5	143.8	969.8	2158.7	0.45
11/3/2013 5:01:30 PM	428.7	9.8	-71.4	-383.6	2158.7	0.45
11/6/2013 12:29:00 AM	372.2	17.0	126.2	877.8	2158.7	0.45
11/19/2013 8:53:00 PM	375.9	8.1	-97.2	-556.0	2158.7	0.45
- 117496						
10/11/2013 2:44:00 PM	397.8	14.5	143.8	969.8	2890.5	0.75
12/8/2013 3:19:00 PM	363.6	5.5	-112.8	-668.3	2890.5	0.75

Low Cycle Fatigue Detecting Unplanned States Continuously

steag

Trend of the damage due to low cycle fatigue [%]

Trend of the low cycle fatigue gradient [%/h]

Forecast of Low Cycle Fatigue "Base Load" vs. "Energy Turnaround"

The additional consumption can be economically assessed and one can react with a more moderate mode of operation.

05.12.2017

Can the present number of start-ups per year be doubled?

Calculatory Component Lifetime Consumption Extrapolation of the Stress

Year	Operating Hours	D _F	D _{F.RES}	Dc	D _{TOTAL}
	[h]	[%]	[%]	[%]	[%]
2014	7735	1,88	1,02	1,89	3,77

Table 1: Lifetime consumption for a selected component

Operating Hours	D _f	Dc	Dtotal
[h]	[%]	[%]	[%]
200.000h	48,6	48,9	97,5

Table 2: Linear extrapolation of the component lifetime consumption for 200,000 h

At first, apparently no potential for doubling the number of start-ups

Analysis of the Mode of Operation Actual Stress Collectives

Start Type	Minimum Cycle Pressure	Minimum Cycle Temperature	Down Time
Cold Start	0 bar	>20 °C	>48h
Warm Start	0 bar	>80 °C	<48h
Hot Start	0 bar	>250 °C	<8h

Table 1: Criteria for the classification of cold, warm, and hot starts (downtime most important)

Start Type	Number	dT _{max} [K]	dT _{max,mean} [K]	Sigma _{max} [N/mm²]	Sigma _{max,mean} [N/mm²]
Cold Start	4	-84	-76	-502	-432
Warm Start	17	-121	-69	-709	-389
Hot Start	3	-77	-70	-436	-396
Shut Down	24	111	49	804	347

Table 2: Actual stress collective of a thick-walled component

Temperature Difference Actual / Reference per Start-up and Shutdown Procedure

Exceedance of the admissible temperature difference during start-up, shortfall during shutdown Potential for adjusting the admissible limits exists.

Modified Admissible Temperature Differences

steag

Lifetime Consumption per Warm Start at Optimized Mode of Operation

Event	Df	Number	Df per Year
	[%]	per Year	[%]
WS,max + Shut Down, max	0,58	2	1,16

Table 3: Lifetime consumption due to critical cycle (warm start + shutdown)

Reduction of the lifetime consumption per year by 1.16% conceivable.

Operating Hours	Dr	Dtotal	Df,optimiert	Dtotal,optimiert
[h]	[%]	[%]	[%]	[%]
200.000h	48,6	97,5	18,6	67,5

Table 4: Linear extrapolation to 200,000h of the stress determined in 2014 (with and without consideration of an optimized mode of operation)

By avoiding critical conditions, reserves for doubling the number of start-ups can be generated.

Result of the Analysis

- 1. Temperature differences of current start-up and shutdown procedures can be legitimized (adjustment of the ratio)
- 2. An increase in the number of start-ups is only conceivable by avoiding modes of operation that involve high stress.

- 1. Rapid growth of renewable energy requires more flexible operation of thermal power plants
- 2. Flexible operation requires knowledge of life time consumption to ensure safe and economical operation
- 3. Online monitoring of fatigue with predictive analitics provides this knowledge to plant engineers

THANK YOU

